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Abstract—In this work, we consider a network of bearing
only sensors in a surveillance scenario. The processing of target
measurements follow a two-tier architecture: The first tier is com-
posed of centralised processing clusters whereas in the second tier,
cluster heads perform decentralised processing. We are interested
in the first tier problem of locating peripheral sensors relative
to their cluster head. We mainly exploit target measurements
received by the cluster head in a parameter estimation setting
which involves Sequential Monte Carlo methods, and is known to
have many difficulties in practice, including particle deficiency,
sensitivity to initialisation, and high computational complexity.
These difficulties are exacerbated by the bearing-only modality
which provides a relatively poor target observability. We propose
an online solution through Bayesian recursions on Junction Tree
models of the posterior which partition the problem into fixed
size subproblems and hence provides scalability with the number
of sensors. We use the received signal strength as noisy range
measurements to improve the robustness and accuracy of our
algorithm. We demonstrate its efficacy with an example.

I. INTRODUCTION

We consider networks of bearing only sensors for surveil-
lance applications. Examples of such networks include passive
sonar equipped surface or underwater buoys which communi-
cate over a wireless network for underwater target detection,
localisation and tracking [1], [2]. A single passive sensor is
often not capable of delivering a reasonably good accuracy
in target tracking which in turn necessitates the use of in-
formation from multiple geographically dispersed platforms.
Multi-sensor exploitation in such networks can be facilitated
by a hiearchical in-network processing structure the first tier of
which is composed of local clusters, or, coalitions, performing
centralised processing [3]. The cluster heads act as a fusion
centre and process the target detections they collect from the
peripheral nodes. A decentralised fusion paradigm (e.g., [4],
[5]), then, can be used among cluster heads.

In this work, we are interested in locating the peripheral
nodes in bearing only clusters. Sensor locations are crucial
for processing the target measurements, because, these mea-
surements are collected in the local coordinate systems of the
sensors [2] and need to be mapped onto a common frame (the
cluster head centered frame, in our case) before target positions
can be estimated. Geographical routing algorithms underpin-
ning the communication network also rely on a reasonably
accurate knowledge of these locations [6].

We are particularly interested in problem settings in which
the use of a global positioning system (GPS) is not possible

or preferrable. For example, terresterial GPS sytems do not
work effectively in underwater environments, mainly due to
signal propagation constraints [1]. It is also not preferable
for networks of surface platforms to rely on a GPS as it
can easily become disfunctional under, for example, jamming.
Other localisation techniques include those using communi-
cation network statistics [7] and/or following protocols with
cooperative vehicles [8] which often fail to provide sufficient
accuracy, low probability of intercept operation or facilitate
self-organisation.

The main source of information we use is the detections
already communicated to the cluster heads. When these mea-
surements are considered alone, sensor localisation can be
posed as parameter estimation in (latent) state space mod-
els (see, e.g., [9, Sec.IV]). Both Maximum Likelihood (ML)
and Bayesian approaches to this problem use a “predictive”
parameter likelihood estimated by filtering the target mea-
surements using, for example, Sequential Monte Carlo (SMC)
methods, and over a time window, integrating quantifications
of how well the measurements are explained by the predictions.
Online solutions obtained from either of the paradigms, how-
ever, suffer from a number of disadvantages such as sensitivity
to initialisation, excessive computational load and bias [10].

The parameter space in sensor localisation is practically
bounded, so, a non-informative localisation prior can, in prin-
ciple, yield an ML equivalent Bayesian solution. In addition,
the problem is rather well-behaved when individual nodes are
capable of providing reasonably accurate target estimates as in
the case of range-bearing sensors or cluster heads in the second
tier: When a pair of nodes is considered, the location likelihood
becomes informative in a short time window. Bayesian recur-
sions realised via SMC and short time windows, then, lead to
an online algorithm which, even with a simplified global model
and approximate likelihoods chosen to comply with the system
constraints, performs reasonably well [11]. In order to obtain
an informative likelihood in the bearing only case, typically
longer time windows and measurement histories of more than
two sensors are needed. With increased window length and
parameter dimensionality, however, SMC realisations become
prone to particle deficiency (see, for example, [10] for a
discussion of the topic). The dimensionality is also related to
the sample size and adds to the issue of scalability with the
number of sensors [12].

We propose an online Bayesian scheme which encompasses
two features for a scalable and robust operation. First, we



approximate the parameter posterior with a triangular Markov
Random Field (MRF) and partition the global problem into
fixed size subproblems. MRF models have proved useful for
fusion in sensor networks [5], [13], and, in this case, the
bounded dimensionality of these problems allows us to fix
the sample sizes used as the number of sensors increases. The
solutions with common location variables are implicitly com-
bined according to inference rules over the Junction tree (JT)
associated with the triangular graph [14]. Second, together with
target measurements, we use the received signal strength (RSS)
at the single element antenna of the cluster head as inaccurate
range measurements collected when the target detections are
received1. The combination of the JT approximations with RSS
measurements allow us to achieve scalable, robust and fairly
accurate localisation for bearing only sensors.

We provide the problem statement and a review of the
online Bayesian approach in Section II. We introduce our
approach in Section III an demonsrate it with an example in
Section IV. Finally, we conclude in Section V.

II. PROBLEM DEFINITION

We consider a sensor cluster consisted of a cluster head
and S peripherals(Fig. 1(a)). The cluster head is numbered
as 0 and can communicate with peripheral i P t1, ¨ ¨ ¨ , Su
through a single hop channel, for example, in the Very High
Frequency (VHF) or Ultra High Frequency (UHF) band. All
patforms are equipped with bearing only sensors which collect
measurements from targets in the surveillance region.

We are interested in estimating the peripheral locations in
the cluster head centered coordinate system. Let us denote the
location of the ith sensor by θi which takes values from a
closed set Θi Ă R2. The cluster parameter is the aggregation
of all peripheral locations θ “ rθ1, ¨ ¨ ¨ , θSs

T such that θ P Θ
where Θ “ Θ1 ˆ ¨ ¨ ¨ ˆΘS .

The measurements available at the cluster head for the
estimation task are predominantly target detections from the
peripherals and received signal strength at the receiver front-
end2. In the following subsections, we introduce the parameter
likelihood functions from these measurements.

A. Target measurements and the parameter likelihood
Let us assume the cluster head coordinate system as our

natural reference frame. The peripherals and the cluster head
collect measurements from a target with state xk which is
typically comprised of the target location and velocity, i.e.,
xk “ rxk,1, xk,2, 9xk,1, 9xk,2s

T , and evolves to the next step
according to

xk`1 „ πp.|xkq.

Sensor i P t0, 1, ..., Su measures zik according to its local
likelihood

zik „ pp.| rxksiq

rxksi “ xk ´ θi.

1RSS measurements between several sensor pairs are useful for locating
sensors, however, they might fail to provide sufficient accuracy for target
tracking, when used alone [7]. Collecting many such measurements is also not
preferable as this might compromise low probability of intercept operation.

2We assume that angle-of-arrival measurements for the received signal are
not available as the transmission bands such as VHF might prohibit the use
of an array of antennae on the sensor platforms.

We denote the likelihood of sensor i with its state argument
in the natural coordinate frame by ppzik|xk; θiq. For example,
bearing only sensors are often modeled by

ppzik|xk; θiq “ N pzik ´ arctanpxk,1 ´ θi,1, xk,2 ´ θi,2q; 0, σ2
i q

(1)
where N p.; 0, σ2

i q is a zero mean Gaussian with a variance
equals to the second order moment of the measurement error.

Let us denote the measurement history of sensor i up to
time k by Zi

1:k. The parameter likelihood l
`

Z0
1:k, ..., Z

S
1:k|θ

˘

based on the cluster history is given by [9, Sec.IV]

l
`

Z0
1:k, ..., Z

S
1:k|θ

˘

“

k´1
ź

t“0

p
`

z0
t`1, ..., z

S
t`1|Z

0
1:t, ..., Z

S
1:t, θ

˘

(2)
where the factorisation follows from the chain rule. The
factors of the product in the right hand side (RHS) of the
equation above can be treated as instantaneous likelihoods for
independent observations of θ.

In addition, the current measurements and the recent his-
tory are conditionally independent given the current target state
and sensor locations, i.e., zit`1 KK Zi

1:t|xt`1,θ holds where KK
denotes the conditional independence relation and the random
variables are written with bold letters. Let us denote the
set of measurement histories tZ0

1:k, ..., Z
S
1:ku by Z0:S

1:k . The
instantaneous likelihood for t is, then, given by

p
`

z0
t`1, ..., z

S
t`1|Z

0:S
1:t , θ

˘

“

ż

ppz0
t`1|xt`1q

S
ź

i“1

ppzit`1|xt`1; θiq

ˆ ppxt`1|Z
0:S
1:t , θqdxt`1, (3)

where the first terms inside the integral are measurement
likelihoods and the last term is a prediction distribution for the
target process at time t` 1, based on the observation histories
of all the nodes in the cluster until t. This distribution is output
by the prediction stage of Bayesian recursive filtering with the
location vector selected as θ.

B. Received Signal Strength measurements
We consider packet transmission from the peripherals to the

cluster head carrying T target detections. We also assume that
these detections are collected and transmitted synchronously,
for the sake of simplicity.

The signal strength of the received packet from peripheral i
follow a log-normal law for the distance [7] which is given by

lpP i|θiq “ N pP i; P̃ p}θi}q, σ
2
dBq (4)

P̃ pdq “ P0 ´ 10µ log
d

d0
(5)

where σdB is the standard deviation of the received power,
}θi} is the norm of θi, P̃ pdq is the ensemble averaged power
at distance d parameterised with the path-loss exponent µ and
the reference power P0 received at distance d0. We assume that
the RSS measurements of sensors are mutually independent.

C. Bayesian online solution with target measurements
We first consider using only the target measurements in a

Bayesian framework. Integration of RSS likelihoods into this
solution is relatively straightforward.
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Fig. 1. (a) A bearing only cluster with S peripherals transmitting detections to
their cluster head. (b) Triangular Markov Random Field G of location variables
formed using an arbitary ordering pi1, i2, ..., iSq of peripherals. The cluster
head is located at θ0. (c) Junction tree GT corresponding to the triangular
MRF. The clique nodes are rectangles and separator nodes are ellipses.

Let us assume that θ is a random vector with a prior distri-
bution over Θ and density denoted by p0pθq. The localisation
posterior is, then, given by

ppθ|Z0
1:k, ..., Z

S
1:kq9p0pθql

`

Z0
1:k, ..., Z

S
1:k|θ

˘

(6)

where l
`

Z0
1:k, ..., Z

S
1:k|θ

˘

is the parameter likelihood. The
sensor locations can be found by using the minimum mean
squared error (MMSE) or the maximum a posteriori (MAP)
estimation rules. The latter yields a solution equivalent to the
Maximum Likelihood (ML) estimate when the prior is selected
as the uniform distribution over Θ denoted by UΘpθq.

A conceptual estimator based on Eq.s(3)–(6) implies batch
processing of measurement histories. Online processing can
be facilitated by time windowing measurements, introducing a
slight dynamic evolution to θ and using Bayesian recursions
with this non-exact model to update a distribution over Θ:

pnpθnq 9 lpZ0:S
T pn´1q`1:Tn|θnqpn|n´1pθnq (7)

pn|n´1pθnq “

ż

fnpθn|θn´1qpn´1pθn´1qdθn´1 (8)

where fnpθn|θn´1q models small Brownian motion steps, i.e.,

fnpθn|θn´1q “ N pθn ´ θn´1; 0, Iσ2
nq (9)

where σ2
n is the energy of the steps at n and I is the identity

matrix with dimensionality equals to that of θn.

Such approximations have proved useful in self-localisation
of range-bearing sensors [11] and have the potential to perform
reasonably well for a wide range of parameter estimation
problems in state-space models [10], including bearing only
sensor localisation. We refer the reader to, e.g., [10], [15],
and the references therein for other possible approaches and
their criticism. In order to achieve a reasonable estimation
accuracy using SMC Bayesian recursions, it is often necessary
to use computationally involved techniques with relatively
large particle sets (see, e.g., [16]) which makes it difficult to
scale with increasing parameter dimensionality. In this work,
we are interested in efficient and robust SMC computations
for which we introduce a simplified probabilistic model for
localisation which we discuss next.

III. TRIANGULAR MRF LOCALISATION POSTERIOR

In this section, we present our localisation posterior model,
discuss inference on the model using Monte Carlo methods and
prior shaping using RSS measurements.

We focus on the update equation (7) as it is the most com-
putationally intensive step and it is relatively straightforward

to design a numerical recipe for realising (8). Let us ignore
the time subscripts for the clarity of discussion in this section
and rewrite (7) as

ppθq9lpZ0:S |θqp0pθq. (10)

First, we assume that the individual peripheral locations
are independent before the update, i.e.,

p0pθq “
ź

iPt1,2,...,Su

p0,ipθiq (11)

where subscript i indicates the fields of θ associated with
peripheral i.

Second, we construct a triangular MRF G given S ě 2 pe-
ripherals. A simple construction follows from an arbitrary or-
dering pi1, ..., iSq of the peripherals and selecting 3-cliques as

C fi tpθ0, θi1 , θi2q, pθ0, θi2 , θi3q, ¨ ¨ ¨ , pθ0, θiS´1
, θiS qu. (12)

Consequently, the size of all of the maximal cliques of G is
three (Fig. 1(b)). Here, θ0 has a density with all the probability
mass at the origin.

We assert the assumption that the Markov properties of
G hold for the localisation posterior given by Eq.(10). Con-
versely, G is an undirected graphical model for Eq.(10) which
implies a particular factorisation for the posterior distribution.
Specifically, for every triangular graph, there corresponds a
Junction Tree (JT) GT which is a tree structure composed
of i) nodes associated with the (maximal) cliques of G
(which are 3-cliques, for G) connected through ii) separator
nodes associated with variables common to both sides of
the connection [14](Fig. 1(c)). The edges of a JT satisfy
the running intersection property: Two nodes with common
variables are connected through nodes which are associated
with the same variables along the unique path connecting
them. These properties lead to the distributions that satisfy
the Markov properties of a JT factorise as [14]

ppθq “

ś

cPC ppθcq
ś

sPS ppθsq
(13)

where C and S are the sets of clique nodes and separator nodes
of the JT, respectively.

The JT we construct by selecting C as given in (12) forms
a chain, in particular, with the set of separators given by

S fi tpθ0, θikq|k “ 2, ¨ ¨ ¨ , S ´ 1u. (14)

Consequently, our assumption implies factorisation of
Eq.(10) as in (13). Together with the independence of the
priors, the update in Eq.(10) becomes

ppθq9

śS´1
k“1 lpZ

0, Zik , Zik`1 |θik , θik`1
q

śS´1
k“2 lpZ

0, Zik |θikq

S
ź

i“1

p0,ipθiq. (15)

The factors in the numerator of (15) involve the joint
paramater space for two peripherals and require three sensor
histories (for the cluster head, peripherals ik and ik`1). The
terms in the denominator involves only the cluster head and
peripheral ik. This structure provides the benefit of bounding
the dimensionality of the SMC updates. Node marginals over
this chain can be found by smoothing operations described by
the JT algorithm which has a sum product structure [17].



A. Particle methods for inference on the JT localisation model

The JT algorithm over GT can be realised using non-
parametric belief propagation [18] which would result with
samples generated from the posterior marginals of all cliques.
These operations involve the costly step of taking the product
of two distributions except for the variables not associated with
any separator node. In order to avoid this, we sample only from
θi1 and θiS in an update step and use a different ordering of
peripherals, for example, a one place cyclic permutation, in
the next round of the Bayesian recursions. In other words, we
update a different pair of location distributions at each step.

The first marginal of the JT posterior in (15) denoted by
ppθi1q can easily be found as nested integrations of products
which equivalently can be computed by a series of message
passings after substituting GT in the JT algorithm [14]. Specif-
ically, the iterative scheme starting with

mS´1pθiS´1
q fi

1

lpZ0,iS´1 |θiS´1
q
ˆ

ż

ΘS

lpZ0,iS´1,iS |θiS´1
, θiS qp0,iS´1

pθiS´1
qp0,iS pθiS qdθiS

(16)

and, continuing for s “ S ´ 2, ..., 2 with

mspθisq fi
1

lpZ0,is |θisq
ˆ

ż

Θs`1

lpZ0,is,is`1 |θis , θis`1qp0,ispθisqms`1pθis`1qdθis`1

(17)

leads to the marginal seeked after given by

ppθi1q9

ż

Θi2

lpZ0,i1,i2 |θi1 , θi2qp0,i1pθi1qm2pθi2qdθi2 . (18)

The same computational structure leads to ppθiS q when the
messaging order is reversed to start at the first clique of GT .

Now, we describe Monte Carlo methods for computing
(16)–(18). Suppose we are given particle sets tωpjqi , θ

pjq
i uj“1:M

representing p0,ipθiq for all peripherals 1, ..., S. An empirical
distribution approximately proportional to (16) can be found
using the Importance Sampling (IS) principle [19] as

mS´1pθiS´1
q9„

M
ÿ

j“1

ζ̃
pjq
iS´1

δpθiS´1
´ θ

pjq
iS´1

q

ζ̃
pjq
iS´1

“

˜

1{
M
ÿ

j“1

ζ
pjq
iS´1

¸

ζ
pjq
iS´1

ζ
pjq
iS´1

“
ω
pjq
iS´1

lpZ0,iS´1 |θ
pjq
iS´1

q
řkN

j1“k1
ω
pj1q
iS

ˆ

kN
ÿ

j1“k1

ω
pj1q
iS

lpZ0,iS´1,iS |θ
pjq
iS´1

, θ
pj1q
iS
q (19)

where tk1, ..., kNu is an index set found by N times sampling
from the discrete distribution implied by tωpjqiS

u.

Here, lpZ0,iS´1 |θ
pjq
iS´1

q is estimated using Eq.s(2)-(3) and
an SMC filter on the measurement windows of the cluster

head and peripheral iS´1. The location of sensor iS´1 is
taken as the particle value θ

pjq
iS´1

. The other likelihood term

lpZ0,iS´1,iS |θ
pjq
iS´1

, θ
pj1q
iS
q is estimated similarly using, this time,

the measurement windows of both peripherals iS´1 and iS , and
with that of the cluster head.

Note that the particle set tζ̃pjqiS´1
, θ
pjq
iS´1

uj“1:M represents
a probability density (approximately) proportional to mS´1.
Next, we use this sample set for approximating (17) for s “
S ´ 2. In general, given an IS approximation for ms`1

ms`1pθis`1
q 9„

M
ÿ

j“1

ζ̃
pjq
is`1

δpθis`1
´ θ

pjq
is`1

q (20)

a similar approximation to mspθisq can be found by,
first, replacing tωpjqiS

, θ
pjq
iS
u and tωpjqiS´1

, θ
pjq
iS´1

u in (19) with

tω
pjq
is`1

, θ
pjq
is`1

u and tζ̃pjqis
, θ
pjq
is
u, respectively, and, second, using

the measurement windows of the corresponding sensors to
obtain the unnormalised weights ζpjqs s.

Finally, the marginal distribution (18) is updated using

ppθi1q«
M
ÿ

j“1

ω
pjq
i1
δpθi1 ´ θ

pjq
i1
q

ω
pjq
i1
“

˜

1{
M
ÿ

j“1

ζ
pjq
i1

¸

ζ
pjq
i1

ζ
pjq
i1
“

ω
pjq
i1

řkN

j1“k1
ζ̃
pj1q
i2

kN
ÿ

j1“k1

ζ̃
pj1q
i2

lpZ0,i1,i2 |θ
pjq
i1
, θ
pj1q
i2
q (21)

For each set of peripheral measurement windows received,
we realise the update step of the Bayesian recursions given
by (7) with the particle methods described above building
upon the triangular localisation model and inference on the
associated JT.

B. Prior shaping with RSS measurements

Informative location priors significantly help to improve the
performance of Bayesian estimation in the type of problems
considered in this work [10]. We use the RSS measurements
for this purpose: At every measurement window step n,
before we proceed with the update step (7) using the MC
computations described in Section III-A, we find the marginal
posteriors based on the RSS measurement using the likelihood
given by (4).

Suppose we are given tωpjqi , θ
pjq
i u representing marginals

of pn|n´1pθnq. Given the RSS measurement Pi, the IS weights
of the location distribution are updated with

ω
pjq
i Ð

´

1{
ÿ

ω̃
pjq
i

¯

ω̃
pjq
i ,

ω̃
pjq
i “ ω

pjq
i lpPi|θ

pjq
i q, (22)

where Ð denotes the assignment of the value at the RHS.

The RSS updates provide the additional benefit of con-
ditioning the marginal distributions for the independence as-
sumption used in the JT update since the RSS measurements
are independent.
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Fig. 2. (a) Illustration of the example scenario. (b) Scatter plot of the localisation prior at n “ 1 after the first RSS update, prior to the JT update. (c)
Localisation posteriors at n “ 5, (d) n “ 10, and (e) n “ 15.

IV. EXAMPLE

We demonstrate the proposed online scheme in an example
scenario with five bearing only sensors collecting measure-
ments from a target moving along a circular path with 20m{s
constant speed (Fig. 2(a)). The noise standard deviation is
σi “ 0.5 for all sensors. The cluster head (sensor 0) receives
new recent measurement windows of length T “ 10 in
every 10 time steps. The associated RSS measurements are
modelled with Eq.s(4) and (5).

We use 150 particles for each peripheral and N “ 40 cross
terms in MC computations (Eq.s(19) and (21)). For each set
of detections, we first sample from the prediction distribution
given by (8) with the Markov shift in (9). Then, we update the
predictions with the RSS measurements and use the particle
sets representing location marginals in the JT update described
in Section III-A. We initiate pi1, i2, i3, i4q with the natural
ordering and use one place cyclic permutation at each step
n. For example, at n “ 1 sensor pairs p1, 4q, at n “ 2 sensor
pairs p2, 1q, and at n “ 3 sensor pairs p3, 2q are updated with
target measurement windows collected between time steps 1–
10,11–20, and 21–30, respectively.

In Fig. 2(b)–(e), we present the scatter plots of equally
weighted particles representing localisation marginals at time
steps n “ 0, 5, 10 and 15 of a typical run. The mean distance
error at the end of n “ 20 steps is 45.7m which is %2.15 of
the nearest peripheral distance (2121.3m of sensor 2).

V. CONCLUSION

In this work, we proposed an online scheme for finding
the location of peripheral sensors in a bearing only cluster
based primarily on target detections transmitted to the clus-
ter head. Such estimation problems have many difficulties
including particle deficiency, sensitivity to initialisation, and
scalability. These problems are aggravated by the bearing only
modality. Our main contribution is a Junction Tree model
which addresses the scalability issue by enabling us to solve
fixed size subproblems and combine the results in a rigorous
framework. We circumvented the particle deficiency problem
by using relatively small measurement windows in recursive
updates. We exploit received signal strength measurements to
provide informative priors to the JT update. We demonstrate
the efficacy of our approach in an example. Future work
includes a thorough comparison of the proposed scheme with
other Bayesian techniques and investigation of simultaneous
use of multiple Junction trees.
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